數學科展
- 老師提出的問題
- 4D Euler磚塊
- 3D Euler磚塊是存在的,即長、寬、高以及各面的對角線都是正整數。最小的長、寬、高是240、117、44。但是否存在4D Euler磚塊呢?即下列聯立方程式是否存在正整數解?
a2+b2=e2
a2+c2=f2
b2+c2=g2
a2+d2=h2
b2+d2=i2
c2+d2=j2
- 15隻象棋子
- 15隻象棋子在最糟的情形下,最多幾步保證可以完成。
- 24遊戲變種
- 研究各種24遊戲變種,如增加指數、最大公因數、最小公倍數等運算。
- 樹狀圖質因數分解
- 研究樹狀圖質因數分解的分法個數。
- 河內塔變種
- 研究各種河內塔變種,如四根以上柱子,或只能移到隔壁柱子。
- 象棋西洋棋制霸或關燈變種
- 研究各種象棋西洋棋制霸或關燈變種,如炮的制霸,馬步關燈。
- 長方體切割成若干正方體
- 研究長方體切割成若干正方體,最少個數的演算法或公式。
- 第一組的問題
- 途中相遇問題
- 三人以上同向(或異向)繞圈圈,同時同地出發,途中(非出發點)相遇是否可能,條件為何?
- 數的排列?
- 12345
12345
12345
12345
- 魔方陣
- 各種魔方陣,3×3的完全平方數魔方陣,魔正方體。
- 過河
- 研究過河邏輯問題的一般條件限制及解法。
- 拆數?
- 第二組的問題
- 易位棋
- 已解決。
- 魔方陣
- 同上。
- 分酒
- 已解決。
- 過河
- 同上。
- 機率?