Given a pair of cosymmedian triangles ABC and A'B'C' and a point P on a Miquelian Benz plane, the three cycles PAA' and PBB' and PCC' concur in a point P'. The transformation P↦P' is the cosymmedian involution. If P is the point at infinity on the classical Möbius plane, then P' is the symmedian point of both ABC and A'B'C'. The isodynamic points of both ABC and A'B'C' on the classical Möbius plane are the same. They are the images of the involution to each other. On the extended complex plane, P'=(A(B-C)((A-P)(B-C))*+B(C-A)((B-P)(C-A))*+C(A-B)((C-P)(A-B))*)/((B-C)((A-P)(B-C))*+(C-A)((B-P)(C-A))*+(A-B)((C-P)(A-B))*), where * is the complex conjugation.
Given a quadrangle ABCD on the extended complex plane, we can get the common harmonic conjugation triple A+A- and B+B- and C+C-, as follows:
Harmonic Conjugates | Formula |
---|---|
A+A- AD | A+=(AD-BC+sqrt((A-B)(D-C)(A-C)(D-B)))/((A+D)-(B+C)) |
A+A- BC | A-=(AD-BC-sqrt((A-B)(D-C)(A-C)(D-B)))/((A+D)-(B+C)) |
B+B- BD | B+=(BD-CA+sqrt((B-C)(D-A)(B-A)(D-C)))/((B+D)-(C+A)) |
B+B- CA | B-=(BD-CA-sqrt((B-C)(D-A)(B-A)(D-C)))/((B+D)-(C+A)) |
C+C- CD | C+=(CD-AB+sqrt((C-A)(D-B)(C-B)(D-A)))/((C+D)-(A+B)) |
C+C- AB | C-=(CD-AB-sqrt((C-A)(D-B)(C-B)(D-A)))/((C+D)-(A+B)) |
A+A- and B+B- and C+C- are a harmonic conjugation triple. The Gibert-Burek-Moses inversion is the harmonic conjugation triple involution. If D is the point at infinity, then the Gibert-Burek-Moses involution image D' of D is the incenter of ABC.
Given a harmonic conjugation triple A+A- and B+B- and C+C- on a Miquelian Benz plane, the radical involution from the three cycles B+B-C+C- and C+C-A+A- and A+A-B+B- is the harmonic conjugation triple involution.
Given a circle c on a seperable Miquelian Möbius plane and a point P, there is the inverse P' of P with respect to c. Given a triangle ABC on the extended complex plane, we have the two harmonic conjugation triples AA+,BB+,CC+ and AA-,BB-,CC- of ABC such that AA+,BB+,CC+ are harmonic conjugates of each other. So are AA-,BB-,CC-.
Harmonic Conjugates | Formula |
---|---|
BB+ CC+ | A+=(Ai(B-C)+B(A-C)+C(A-B))/(i(B-C)+(A-C)+(A-B)) |
BB- CC- | A-=(A(-i(B-C))+B(A-C)+C(A-B))/(-i(B-C)+(A-C)+(A-B)) |
CC+ AA+ | B+=(A(B-C)+Bi(C-A)+C(B-A))/((B-C)+i(C-A)+(B-A)) |
CC- AA- | B-=(A(B-C)+B(-i(C-A))+C(B-A))/((B-C)-i(C-A)+(B-A)) |
AA+ BB+ | C+=(A(C-B)+B(C-A)+Ci(A-B))/((C-B)+(C-A)+i(A-B)) |
AA- BB- | C-=(A(C-B)+B(C-A)+C(-i(A-B)))/((C-B)+(C-A)-i(A-B)) |
Given a quadrangle ABCD and a point P on a Miquelian Benz plane, we have three involutions IA(X)=XAD∩XBC and IB(X)=XBD∩XCA and IC(X)=XCD∩XAB and can construct the isogonal conjugate P' of P with respect to ABCD by applying the three involutions in any order to P. That is, P'=IA(IB(IC(P)))=IC(IA(IB(P)))=... etc. If D is the point at infinity on the classical Möbius plane, then P' is the isogonal conjugate of P with respect to triangle ABC. If P is the point at infinity on the classical Möbius plane, P' is the isogonal center QA-P4 of quadrangle ABCD. Given a quadrangle ABCD and any point from the eight points A+B+C+D+ and A-B-C-D- on a Miquelian Benz plane, we can construct the other 7 points with the following table:
Consctrction of A-B-C-D- from A+B+C+D+ and ABCD | as Cyclologic Center | ||||
---|---|---|---|---|---|
A- | =IC(B+) | =IB(C+) | =IA(D+) | =B+CD∩C+DB∩D+BC | |
B- | =IC(A+) | =IA(C+) | =IB(D+) | =C+DA∩D+AC∩A+CD | |
C- | =IB(A+) | =IA(B+) | =IC(D+) | =D+AB∩A+BD∩B+DA | |
D- | =IA(A+) | =IB(B+) | =IC(C+) | =A+BC∩B+CA∩C+AB | |
Consctrction of A+B+C+D+ from A-B-C-D- and ABCD | as Cyclologic Center | ||||
A+ | =IC(B-) | =IB(C-) | =IA(D-) | =B-CD∩C-DB∩D-BC | |
B+ | =IC(A-) | =IA(C-) | =IB(D-) | =C-DA∩D-AC∩A-CD | |
C+ | =IB(A-) | =IA(B-) | =IC(D-) | =D-AB∩A-BD∩B-DA | |
D+ | =IA(A-) | =IB(B-) | =IC(C-) | =A-BC∩B-CA∩C-AB |
Given three cycles abc and a point D+ on an ovoidal Benz plane, we have the three pairs of points of intersection A+A-=b∩c and B+B-=c∩a and C+C-=a∩b. According to the bundle theorem, the three cycles D+A+A- and D+B+B- and D+C+C- concur in a point D-. The transformation D+↦D- is the radical involution. If D+ is the point at infinity on the classical Möbius plane, D- is the radical center of abc. Moreover, A+A- and B+B- and C+C- are image pairs of radical involutions.
Radical Involution Image Pair | Cycles |
---|---|
A+A- | (B+B-C+C-)(C+C-D+D-)(D+D-B+B-) |
B+B- | (C+C-D+D-)(D+D-A+A-)(A+A-C+C-) |
C+C- | (D+D-A+A-)(A+A-B+B-)(B+B-D+D-) |
D+D- | (A+A-B+B-)(B+B-C+C-)(C+C-A+A-) |
If A1A2 and B1B2 and C1C2 are pairs of points of intersection of cycle pairs (B+B-C+C-),(A+A-D+D-) and (C+C-A+A-),(B+B-D+D-) and (A+A-B+B-),(C+C-D+D-), respectively, then A+A- and B+B- and C+C- and D+D- are radical involution image pairs of cycles (B1B2C1C2)(C1C2A1A2)(A1A2B1B2)